Enhanced production of D-lactate in cyanobacteria by re-routing photosynthetic cyclic and pseudo-cyclic electron flow
Cyanobacteria are promising chassis strains for the photosynthetic production of platform and specialty chemicals from carbon dioxide. Their efficient light harvesting and metabolic flexibility abilities have allowed a wide range of biomolecules, such as the bioplastic polylactate precursor D-lactat...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/145248 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Cyanobacteria are promising chassis strains for the photosynthetic production of platform and specialty chemicals from carbon dioxide. Their efficient light harvesting and metabolic flexibility abilities have allowed a wide range of biomolecules, such as the bioplastic polylactate precursor D-lactate, to be produced, though usually at relatively low yields. In order to increase photosynthetic electron flow towards the production of D-lactate, we have generated several strains of the marine cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) with deletions in genes involved in cyclic or pseudo-cyclic electron flow around photosystem I. Using a variant of the Chlamydomonas reinhardtii D-lactate dehydrogenase (LDHSRT, engineered to efficiently utilize NADPH in vivo), we have shown that deletion of either of the two flavodiiron flv homologs (involved in pseudo-cyclic electron transport) or the Syn7002 pgr5 homolog (proposed to be a vital part of the cyclic electron transport pathway) is able to increase D-lactate production in Syn7002 strains expressing LDHSRT and the Escherichia coli LldP (lactate permease), especially at low temperature (25°C) and 0.04% (v/v) CO2, though at elevated temperatures (38°C) and/or high (1%) CO2 concentrations, the effect was less obvious. The Δpgr5 background seemed to be particularly beneficial at 25°C and 0.04% (v/v) CO2, with a nearly 7-fold increase in D-lactate accumulation in comparison to the wild-type background (≈1000 vs ≈150 mg/L) and decreased side effects in comparison to the flv deletion strains. Overall, our results show that manipulation of photosynthetic electron flow is a viable strategy to increase production of platform chemicals in cyanobacteria under ambient conditions. |
---|