A Bregman splitting scheme for distributed optimization over networks

We consider distributed optimization problems, in which a group of agents are to collaboratively seek the global optimum through peer-to-peer communication networks. The problem arises in various application areas, such as resource allocation, sensor fusion, and distributed learning. We present a ge...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, Jinming, Zhu, Shanying, Soh, Yeng Chai, Xie, Lihua
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/145279
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-145279
record_format dspace
spelling sg-ntu-dr.10356-1452792020-12-16T07:23:38Z A Bregman splitting scheme for distributed optimization over networks Xu, Jinming Zhu, Shanying Soh, Yeng Chai Xie, Lihua School of Electrical and Electronic Engineering Engineering::Electrical and electronic engineering Convergence Bregman Method We consider distributed optimization problems, in which a group of agents are to collaboratively seek the global optimum through peer-to-peer communication networks. The problem arises in various application areas, such as resource allocation, sensor fusion, and distributed learning. We present a general algorithmic framework based on the Bregman method and operator splitting, which allows us to easily recover most of the existing distributed algorithms. Under this framework, we propose a general efficient distributed algorithm-distributed forward-backward Bregman splitting (D-FBBS)-to simultaneously solve the above primal problem as well as its dual. The proposed algorithm allows agents to communicate asynchronously and, thus, lends itself to stochastic networks. This algorithm is shown to have close connections with some existing well-known algorithms when dealing with fixed networks. However, we will show that it is generally different from the existing ones due to its effectiveness in handling stochastic networks. With proper assumptions, we establish a nonergodic convergence rate of O(1/k) in terms of fixed-point residuals over fixed networks both for D-FBBS and its inexact version (ID-FBBS) that is more computationally efficient and an ergodic convergence rate of O(1/k) for D-FBBS over stochastic networks. We also apply the proposed algorithm to sensor fusion problems to show its superior performance compared to existing methods. 2020-12-16T07:23:38Z 2020-12-16T07:23:38Z 2018 Journal Article Xu, J., Zhu, S., Soh, Y. C., & Xie, L. (2018). A Bregman splitting scheme for distributed optimization over networks. IEEE Transactions on Automatic Control, 63(11), 3809-3824. doi:10.1109/TAC.2018.2805260 1558-2523 https://hdl.handle.net/10356/145279 10.1109/TAC.2018.2805260 11 63 3809 3824 en IEEE Transactions on Automatic Control © 2018 Institute of Electrical and Electronics Engineers (IEEE). All rights reserved.
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Electrical and electronic engineering
Convergence
Bregman Method
spellingShingle Engineering::Electrical and electronic engineering
Convergence
Bregman Method
Xu, Jinming
Zhu, Shanying
Soh, Yeng Chai
Xie, Lihua
A Bregman splitting scheme for distributed optimization over networks
description We consider distributed optimization problems, in which a group of agents are to collaboratively seek the global optimum through peer-to-peer communication networks. The problem arises in various application areas, such as resource allocation, sensor fusion, and distributed learning. We present a general algorithmic framework based on the Bregman method and operator splitting, which allows us to easily recover most of the existing distributed algorithms. Under this framework, we propose a general efficient distributed algorithm-distributed forward-backward Bregman splitting (D-FBBS)-to simultaneously solve the above primal problem as well as its dual. The proposed algorithm allows agents to communicate asynchronously and, thus, lends itself to stochastic networks. This algorithm is shown to have close connections with some existing well-known algorithms when dealing with fixed networks. However, we will show that it is generally different from the existing ones due to its effectiveness in handling stochastic networks. With proper assumptions, we establish a nonergodic convergence rate of O(1/k) in terms of fixed-point residuals over fixed networks both for D-FBBS and its inexact version (ID-FBBS) that is more computationally efficient and an ergodic convergence rate of O(1/k) for D-FBBS over stochastic networks. We also apply the proposed algorithm to sensor fusion problems to show its superior performance compared to existing methods.
author2 School of Electrical and Electronic Engineering
author_facet School of Electrical and Electronic Engineering
Xu, Jinming
Zhu, Shanying
Soh, Yeng Chai
Xie, Lihua
format Article
author Xu, Jinming
Zhu, Shanying
Soh, Yeng Chai
Xie, Lihua
author_sort Xu, Jinming
title A Bregman splitting scheme for distributed optimization over networks
title_short A Bregman splitting scheme for distributed optimization over networks
title_full A Bregman splitting scheme for distributed optimization over networks
title_fullStr A Bregman splitting scheme for distributed optimization over networks
title_full_unstemmed A Bregman splitting scheme for distributed optimization over networks
title_sort bregman splitting scheme for distributed optimization over networks
publishDate 2020
url https://hdl.handle.net/10356/145279
_version_ 1688665504170901504