Bayesian filtering with unknown sensor measurement losses

This paper studies the state estimation problem of a stochastic nonlinear system with unknown sensor measurement losses. If the estimator knows the sensor measurement losses of a linear Gaussian system, the minimum variance estimate is easily computed by the celebrated intermittent Kalman filter (IK...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Jiaqi, You, Keyou, Xie, Lihua
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/145323
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This paper studies the state estimation problem of a stochastic nonlinear system with unknown sensor measurement losses. If the estimator knows the sensor measurement losses of a linear Gaussian system, the minimum variance estimate is easily computed by the celebrated intermittent Kalman filter (IKF). However, this will no longer be the case when the measurement losses are unknown and/or the system is nonlinear or non-Gaussian. By exploiting the binary property of the measurement loss process and the IKF, we design three suboptimal filters for the state estimation, that is, BKF-I, BKF-II, and RBPF. The BKF-I is based on the MAP estimator of the measurement loss process and the BKF-II is derived by estimating the conditional loss probability. The RBPF is a particle filter-based algorithm that marginalizes out the loss process to increase the efficiency of particles. All of the proposed filters can be easily implemented in recursive forms. Finally, a linear system, a target tracking system, and a quadrotor's path control problem are included to illustrate their effectiveness, and show the tradeoff between computational complexity and estimation accuracy of the proposed filters.