Numerical investigation of nanostructure orientation on electroosmotic flow

Electroosmotic flow (EOF) is fluid flow induced by an applied electric field, which has been widely employed in various micro-/nanofluidic applications. Past investigations have revealed that the presence of nanostructures in microchannel reduces EOF. Hitherto, the angle-dependent behavior of nanoli...

Full description

Saved in:
Bibliographic Details
Main Authors: Lim, An Eng, Lam, Yee Cheong
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/145363
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Electroosmotic flow (EOF) is fluid flow induced by an applied electric field, which has been widely employed in various micro-/nanofluidic applications. Past investigations have revealed that the presence of nanostructures in microchannel reduces EOF. Hitherto, the angle-dependent behavior of nanoline structures on EOF has not yet been studied in detail and its understanding is lacking. Numerical analyses of the effect of nanoline orientation angle θ on EOF to reveal the associated mechanisms were conducted in this investigation. When θ increases from 5° to 90° (from parallel to perpendicular to the flow direction), the average EOF velocity decreases exponentially due to the increase in distortion of the applied electric field distribution at the structured surface, as a result of the increased apparent nanolines per unit microchannel length. With increasing nanoline width W, the decrease of average EOF velocity is fairly linear, attributed to the simultaneous narrowing of nanoline ridge (high local fluid velocity region). While increasing nanoline depth D results in a monotonic decrease of the average EOF velocity. This reduction stabilizes for aspect ratio D/W > 0.5 as the electric field distribution distortion within the nanoline trench remains nearly constant. This investigation reveals that the effects on EOF of nanolines, and by extrapolation for any nanostructures, may be directly attributed to their effects on the distortion of the applied electric field distribution within a microchannel.