Multiple uncertainty relation for accelerated quantum information
The uncertainty principle, first introduced by Heisenberg in inertial frames, clearly distinguishes quantum theories from classical mechanics. In non-inertial frames, its information-theoretic expressions, namely entropic uncertainty relations, have been extensively studied through delocalized quant...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2020
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/145461 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The uncertainty principle, first introduced by Heisenberg in inertial frames, clearly distinguishes quantum theories from classical mechanics. In non-inertial frames, its information-theoretic expressions, namely entropic uncertainty relations, have been extensively studied through delocalized quantum fields, and localization of the quantum fields were discussed as well. However, infeasibility of measurements applied on a delocalized quantum field due to the finite size of measurement apparatuses is left unexplained. Therefore, physical clarification of a quantum protocol revealing entropic uncertainty relations still needs investigation. Building on advances in quantum field theories and theoretical developments in entropic uncertainty relations, we demonstrate a relativistic protocol of an uncertainty game in the presence of localized fermionic quantum fields inside cavities. Moreover, a novel lower bound for entropic uncertainty relations with multiple quantum memories is given in terms of the Holevo quantity, which implies how acceleration affects uncertainty relations. |
---|