XOR-Net : an efficient computation pipeline for binary neural network inference on edge devices
Accelerating the inference of Convolution Neural Networks (CNNs) on edge devices is essential due to the small memory size and poor computation capability of these devices. Network quantization methods such as XNOR-Net, Bi-Real-Net, and XNOR-Net++ reduce the memory usage of CNNs by binarizing the CN...
Saved in:
Main Authors: | Zhu, Shien, Duong, Luan H. K., Liu, Weichen |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2020
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/145503 https://doi.org/10.21979/N9/XEH3D1 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
TAB : unified and optimized ternary, binary and mixed-precision neural network inference on the edge
由: Zhu, Shien, et al.
出版: (2022) -
EdgeNAS: discovering efficient neural architectures for edge systems
由: Luo, Xiangzhong, et al.
出版: (2023) -
Latency-constrained DNN architecture learning for edge systems using zerorized batch normalization
由: Huai, Shuo, et al.
出版: (2023) -
EdgeCompress: coupling multi-dimensional model compression and dynamic inference for EdgeAI
由: Kong, Hao, et al.
出版: (2023) -
Accurate and scalable cross-architecture cross-OS binary code search with emulation
由: Xue, Yinxing, et al.
出版: (2020)