Imaging chemical kinetics of radical polymerization with an ultrafast coherent Raman microscope

Numerous mechanisms have been proposed for polymerization to provide qualitative and quantitative prediction of how monomers spatially and temporally arrange into the polymeric chains. However, less is known about this process at the molecular level because the ultrafast chemical reaction is inacces...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Haozheng, Cheng, Yong, Tang, Huajun, Bi, Yali, Chen, Yage, Yang, Guang, Guo, Shoujing, Tian, Sidan, Liao, Jiangshan, Lv, Xiaohua, Zeng, Shaoqun, Zhu, Mingqiang, Xu, Chenjie, Cheng, Ji-Xin, Wang, Ping
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/10356/145575
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Numerous mechanisms have been proposed for polymerization to provide qualitative and quantitative prediction of how monomers spatially and temporally arrange into the polymeric chains. However, less is known about this process at the molecular level because the ultrafast chemical reaction is inaccessible for any form of microscope so far. Here, to address this unmet challenge, a stimulated Raman scattering microscope based on collinear multiple beams (COMB‐SRS) is demonstrated, which allows label‐free molecular imaging of polymer synthesis in action at speed of 2000 frames per second. The field of view of the developed 2 kHz SRS microscope is 30 × 28 µm2 with 50 × 46 pixels and 7 µs dwell time. By catching up the speed of chemical reaction, COMB‐SRS is able to quantitatively visualize the ultrafast dynamics of molecular vibrations with submicron spatial resolution and sub‐millisecond temporal resolution. The propagating polymer waves driven by reaction rate and persistent UV initiation are observed in situ. This methodology is expected to permit the development of novel functional polymers, controllable photoresists, 3D printing, and other new polymerization technologies.