Outage bridging and trajectory recovery in visible light positioning using insufficient RSS information
Indoor positioning technology is vital for various location-aware applications while visible light positioning (VLP) is especially promising due to its ubiquitous and energy-efficient features. VLP has been widely investigated under the assumption of line of sight (LoS), yet, VLP signal blockage can...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/145811 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Indoor positioning technology is vital for various location-aware applications while visible light positioning (VLP) is especially promising due to its ubiquitous and energy-efficient features. VLP has been widely investigated under the assumption of line of sight (LoS), yet, VLP signal blockage can happen frequently in a practical indoor environment and brings about outage problems to indoor localization/tracking services. However, this problem is usually overlooked or sidestepped in the existing works. Our work, for the first time, investigates the outage problem in a received signal strength (RSS)-based VLP system. Efficient algorithms for outage bridging and trajectory recovery are proposed by smartly fusing with insufficient RSS information. Specifically, a partial-RSS-assisted inertial navigation system (PRAINS) inspired by extended Kalman filter (EKF) is developed to bridge sporadic outage, while a bi-directional structured PRAINS (Bid-PRAINS) is developed to use both pre- and post- outage information to recover the lost trajectory information. To further deal with a more general situation when the system noise features are not pre-known and hard to be measured/estimated, a semi-parameterized RNN based learnable Kalman filter (SPR-LKF) is proposed in place of the EKF to learn the observation/transition noise features and optimize the estimation simultaneously through a recurrent neural network (RNN). Extensive tests show that the PRAINS/ Bid-PRAINS has at least 62% accuracy improvement over the conventional inertial navigation system (INS)-only algorithm, while the proposed SPR-LKF/ Bid-SPR-LKF can offer an even better accuracy gain of 70% even without pre-knowing the system noise feature. |
---|