Synthesis and topology control of covalent organic frameworks

As a class of crystalline porous materials which are built by organic building units, covalent organic frameworks (COFs) are attracting tremendous attention in recent decades. Because of their intrinsic properties of porous, high stability, and low density, this kind of material has drawn great atte...

Full description

Saved in:
Bibliographic Details
Main Author: Li, Liuxiao
Other Authors: Zhang Qichun
Format: Thesis-Doctor of Philosophy
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/145860
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-145860
record_format dspace
spelling sg-ntu-dr.10356-1458602023-03-04T16:49:28Z Synthesis and topology control of covalent organic frameworks Li, Liuxiao Zhang Qichun School of Materials Science and Engineering QCZHANG@ntu.edu.sg Engineering::Materials As a class of crystalline porous materials which are built by organic building units, covalent organic frameworks (COFs) are attracting tremendous attention in recent decades. Because of their intrinsic properties of porous, high stability, and low density, this kind of material has drawn great attention in the fields of sensing, catalysis, and gas storage/separation, etc. Topology or crystal structure which is determined by the pore size and shape is one of the most important parameters of COFs. Therefore, this thesis aims to controlled synthesize COFs with novel topologies and explore their application in AIE, drug delivery, and controlled CO releasing. First, a series of 2D COFs with kgd topology, namely HFPB-TAPA, HFPB-TAPB, and HFPB-TABPB are synthesized via solvothermal reaction of HFPB and TAPA, TAPB, TABPB, respectively. The as-prepared 2D COFs constructed from monomers with C6 and C3 symmetry form micropores. As a proof of concept application, HFPB-TABPB with micropores is selected as the drug carrier for drug loading and releasing of ibuprofen (with a size of 6 x 12 Å). Second, by altering substituents of the building block with the same symmetry, two highly crystalline phase-pure 2D COFs, namely TPE-COF-OH and TPE-COF-OMe, with different topologies and porosities were successfully synthesized and characterized. Low-dose HRTEM imaging combined with molecular simulation indicates that the linkage conformations of the COF skeletons governed by intramolecular hydrogen bonding dictate the resulting COF topologies. Additionally, benefit from the abundant existence of (N, O)-bidentate Schiff base moieties in TPE-COF-OH, post-synthetic modifications of TPE-COF-OH to form a boron complexation, namely TPE-COF-BF2, fluorescence “turn on” and “aggregation-induced emission” properties of the obtained TPE-COF-BF2 were also observed. Last, a new porous 3D COF, denoted as TamBpyda was developed via the condensation of (2, 2′-Bipyridine)-5, 5′-dicarboxaldehyde (BPyDA) and tetra (4-anilyl)methane (TAM). The as-prepared TamBpyda was further metalated with Mn(CO)5Br to generate manganese carbonyl complex functionalized Mn-TamBpyda. As a proof-of-concept application, Mn-TamBpyda was applied as the CO releasing materials, which exhibited the ability to deliver and release CO inside the cells upon the light irradiation. Doctor of Philosophy 2021-01-12T07:57:40Z 2021-01-12T07:57:40Z 2020 Thesis-Doctor of Philosophy Li, L. (2020). Synthesis and topology control of covalent organic frameworks. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/145860 10.32657/10356/145860 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Materials
spellingShingle Engineering::Materials
Li, Liuxiao
Synthesis and topology control of covalent organic frameworks
description As a class of crystalline porous materials which are built by organic building units, covalent organic frameworks (COFs) are attracting tremendous attention in recent decades. Because of their intrinsic properties of porous, high stability, and low density, this kind of material has drawn great attention in the fields of sensing, catalysis, and gas storage/separation, etc. Topology or crystal structure which is determined by the pore size and shape is one of the most important parameters of COFs. Therefore, this thesis aims to controlled synthesize COFs with novel topologies and explore their application in AIE, drug delivery, and controlled CO releasing. First, a series of 2D COFs with kgd topology, namely HFPB-TAPA, HFPB-TAPB, and HFPB-TABPB are synthesized via solvothermal reaction of HFPB and TAPA, TAPB, TABPB, respectively. The as-prepared 2D COFs constructed from monomers with C6 and C3 symmetry form micropores. As a proof of concept application, HFPB-TABPB with micropores is selected as the drug carrier for drug loading and releasing of ibuprofen (with a size of 6 x 12 Å). Second, by altering substituents of the building block with the same symmetry, two highly crystalline phase-pure 2D COFs, namely TPE-COF-OH and TPE-COF-OMe, with different topologies and porosities were successfully synthesized and characterized. Low-dose HRTEM imaging combined with molecular simulation indicates that the linkage conformations of the COF skeletons governed by intramolecular hydrogen bonding dictate the resulting COF topologies. Additionally, benefit from the abundant existence of (N, O)-bidentate Schiff base moieties in TPE-COF-OH, post-synthetic modifications of TPE-COF-OH to form a boron complexation, namely TPE-COF-BF2, fluorescence “turn on” and “aggregation-induced emission” properties of the obtained TPE-COF-BF2 were also observed. Last, a new porous 3D COF, denoted as TamBpyda was developed via the condensation of (2, 2′-Bipyridine)-5, 5′-dicarboxaldehyde (BPyDA) and tetra (4-anilyl)methane (TAM). The as-prepared TamBpyda was further metalated with Mn(CO)5Br to generate manganese carbonyl complex functionalized Mn-TamBpyda. As a proof-of-concept application, Mn-TamBpyda was applied as the CO releasing materials, which exhibited the ability to deliver and release CO inside the cells upon the light irradiation.
author2 Zhang Qichun
author_facet Zhang Qichun
Li, Liuxiao
format Thesis-Doctor of Philosophy
author Li, Liuxiao
author_sort Li, Liuxiao
title Synthesis and topology control of covalent organic frameworks
title_short Synthesis and topology control of covalent organic frameworks
title_full Synthesis and topology control of covalent organic frameworks
title_fullStr Synthesis and topology control of covalent organic frameworks
title_full_unstemmed Synthesis and topology control of covalent organic frameworks
title_sort synthesis and topology control of covalent organic frameworks
publisher Nanyang Technological University
publishDate 2021
url https://hdl.handle.net/10356/145860
_version_ 1759857249589657600