A novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy
Donor corneas with low endothelial cell densities (ECD) are deemed unsuitable for corneal endothelial transplantation. This study evaluated a two-step incubation and dissociation harvesting approach to isolate single corneal endothelial cells (CECs) from donor corneas for corneal endothelial cell-in...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/145934 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-145934 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1459342023-07-14T15:48:07Z A novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy Ong, Hon Shing Peh, Gary Neo, Dawn Jin Hui Ang, Heng-Pei Adnan, Khadijah Nyein, Chan Lwin Morales-Wong, Fernando Bhogal, Maninder Kocaba, Viridiana Mehta, Jodhbir Singh School of Materials Science and Engineering Science::Medicine Ophthalmology Cornea Donor corneas with low endothelial cell densities (ECD) are deemed unsuitable for corneal endothelial transplantation. This study evaluated a two-step incubation and dissociation harvesting approach to isolate single corneal endothelial cells (CECs) from donor corneas for corneal endothelial cell-injection (CE-CI) therapy. To isolate CECs directly from donor corneas, optimization studies were performed where donor Descemet’s membrane/corneal endothelium (DM/CE) were peeled and incubated in either M4-F99 or M5-Endo media before enzymatic digestion. Morphometric analyses were performed on the isolated single cells. The functional capacities of these cells, isolated using the optimized simple non-cultured endothelial cells (SNEC) harvesting technique, for CE-CI therapy were investigated using a rabbit bullous keratopathy model. The two control groups were the positive controls, where rabbits received cultured CECs, and the negative controls, where rabbits received no CECs. Whilst it took longer for CECs to dislodge as single cells following donor DM/CE incubation in M5-Endo medium, CECs harvested were morphologically more homogenous and smaller compared to CECs obtained from DM/CE incubated in M4-F99 medium (p < 0.05). M5-Endo medium was hence selected as the DM/CE incubation medium prior to enzymatic digestion to harvest CECs for the in vivo cell-injection studies. Following SNEC injection, mean central corneal thickness (CCT) of rabbits increased to 802.9 ± 147.8 μm on day 1, gradually thinned, and remained clear with a CCT of 385.5 ± 38.6 μm at week 3. Recovery of corneas was comparable to rabbits receiving cultured CE-CI (p = 0.40, p = 0.17, and p = 0.08 at weeks 1, 2, and 3, respectively). Corneas that did not receive any cells remained significantly thicker compared to both SNEC injection and cultured CE-CI groups (p < 0.05). This study concluded that direct harvesting of single CECs from donor corneas for SNEC injection allows the utilization of donor corneas unsuitable for conventional endothelial transplantation. National Medical Research Council (NMRC) Published version Health Research Endowment Fund (HREF), Singapore National Eye Centre (reference: R1488/71/2017); National Medical Research Council, Clinician Scientist Award-Senior Investigator Category, Singapore (reference: JRNMRR163801). 2021-01-14T08:40:38Z 2021-01-14T08:40:38Z 2020 Journal Article Ong, H. S., Peh, G., Neo, D. J. H., Ang, H.-P., Adnan, K., Nyein, C. L., . . . Mehta, J. S. (2020). A novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy. Cells, 9(6), 1428-. doi:10.3390/cells9061428 2073-4409 0000-0001-5475-8712 0000-0002-4836-6330 0000-0002-3044-5057 0000-0001-6362-4898 https://hdl.handle.net/10356/145934 10.3390/cells9061428 32526886 2-s2.0-85086424255 6 9 en JRNMRR163801 Cells © 2020 The Authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Science::Medicine Ophthalmology Cornea |
spellingShingle |
Science::Medicine Ophthalmology Cornea Ong, Hon Shing Peh, Gary Neo, Dawn Jin Hui Ang, Heng-Pei Adnan, Khadijah Nyein, Chan Lwin Morales-Wong, Fernando Bhogal, Maninder Kocaba, Viridiana Mehta, Jodhbir Singh A novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy |
description |
Donor corneas with low endothelial cell densities (ECD) are deemed unsuitable for corneal endothelial transplantation. This study evaluated a two-step incubation and dissociation harvesting approach to isolate single corneal endothelial cells (CECs) from donor corneas for corneal endothelial cell-injection (CE-CI) therapy. To isolate CECs directly from donor corneas, optimization studies were performed where donor Descemet’s membrane/corneal endothelium (DM/CE) were peeled and incubated in either M4-F99 or M5-Endo media before enzymatic digestion. Morphometric analyses were performed on the isolated single cells. The functional capacities of these cells, isolated using the optimized simple non-cultured endothelial cells (SNEC) harvesting technique, for CE-CI therapy were investigated using a rabbit bullous keratopathy model. The two control groups were the positive controls, where rabbits received cultured CECs, and the negative controls, where rabbits received no CECs. Whilst it took longer for CECs to dislodge as single cells following donor DM/CE incubation in M5-Endo medium, CECs harvested were morphologically more homogenous and smaller compared to CECs obtained from DM/CE incubated in M4-F99 medium (p < 0.05). M5-Endo medium was hence selected as the DM/CE incubation medium prior to enzymatic digestion to harvest CECs for the in vivo cell-injection studies. Following SNEC injection, mean central corneal thickness (CCT) of rabbits increased to 802.9 ± 147.8 μm on day 1, gradually thinned, and remained clear with a CCT of 385.5 ± 38.6 μm at week 3. Recovery of corneas was comparable to rabbits receiving cultured CE-CI (p = 0.40, p = 0.17, and p = 0.08 at weeks 1, 2, and 3, respectively). Corneas that did not receive any cells remained significantly thicker compared to both SNEC injection and cultured CE-CI groups (p < 0.05). This study concluded that direct harvesting of single CECs from donor corneas for SNEC injection allows the utilization of donor corneas unsuitable for conventional endothelial transplantation. |
author2 |
School of Materials Science and Engineering |
author_facet |
School of Materials Science and Engineering Ong, Hon Shing Peh, Gary Neo, Dawn Jin Hui Ang, Heng-Pei Adnan, Khadijah Nyein, Chan Lwin Morales-Wong, Fernando Bhogal, Maninder Kocaba, Viridiana Mehta, Jodhbir Singh |
format |
Article |
author |
Ong, Hon Shing Peh, Gary Neo, Dawn Jin Hui Ang, Heng-Pei Adnan, Khadijah Nyein, Chan Lwin Morales-Wong, Fernando Bhogal, Maninder Kocaba, Viridiana Mehta, Jodhbir Singh |
author_sort |
Ong, Hon Shing |
title |
A novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy |
title_short |
A novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy |
title_full |
A novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy |
title_fullStr |
A novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy |
title_full_unstemmed |
A novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy |
title_sort |
novel approach of harvesting viable single cells from donor corneal endothelium for cell-injection therapy |
publishDate |
2021 |
url |
https://hdl.handle.net/10356/145934 |
_version_ |
1772825900109266944 |