Cross dataset workload classification using encoded wavelet decomposition features
For practical applications, it is desirable for a trained classification system to be independent of task and/or subject. In this study, we show one-way transfer between two independent EEG workload datasets: from a large multitasking dataset with 48 subjects to a second Stroop test dataset with 18...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/145993 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | For practical applications, it is desirable for a trained classification system to be independent of task and/or subject. In this study, we show one-way transfer between two independent EEG workload datasets: from a large multitasking dataset with 48 subjects to a second Stroop test dataset with 18 subjects. This was achieved with a classification system trained using sparse encoded representations of the decomposed wavelets in the alpha, beta and theta power bands, which learnt a feature representation that outperformed benchmark power spectral density features by 3.5%. We also explore the possibility of enhancing performance with the utilization of domain adaptation techniques using transfer component analysis (TCA), obtaining 30.0% classification accuracy for a 4-class cross dataset problem. |
---|