Rapid identification of tsunamigenic earthquakes using GNSS ionospheric sounding

The largest tsunamis are generated by seafloor uplift resulting from rupture of offshore subduction-zone megathrusts. The rupture of the shallowest part of a megathrust often produces unexpected outsize tsunami relative to their seismic magnitude. These are so called ‘tsunami earthquakes’, which are...

Full description

Saved in:
Bibliographic Details
Main Authors: Manta, Fabio, Occhipinti, Giovanni, Feng, Lujia, Hill, Emma M.
Other Authors: Asian School of the Environment
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146103
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The largest tsunamis are generated by seafloor uplift resulting from rupture of offshore subduction-zone megathrusts. The rupture of the shallowest part of a megathrust often produces unexpected outsize tsunami relative to their seismic magnitude. These are so called ‘tsunami earthquakes’, which are difficult to identify rapidly using the current tsunami warning systems, even though, they produce some of the deadliest tsunami. We here introduce a new method to evaluate the tsunami risk by measuring ionospheric total electron content (TEC). We examine two Mw 7.8 earthquakes (one is a tsunami earthquake and the other is not) generated in 2010 by the Sunda megathrust, offshore Sumatra, to demonstrate for the first time that observations of ionospheric sounding from Global Navigation Satellite System (GNSS) can be used to evaluate the tsunamigenic potential of earthquakes as early as 8 min after the mainshock.