Optimal investment-reinsurance strategy on dynamic mean-variance problem with stochastic volatility

In this final year project, we further study the dynamic mean-variance problem with constrained risk control on reinsurance and investment (no-shorting) strategy for insurers with unknown expected terminal wealth. This project will fi rst solve the problem under traditional Black-Scholes model, whe...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Sun, Jingya
مؤلفون آخرون: PUN Chi Seng
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/146121
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:In this final year project, we further study the dynamic mean-variance problem with constrained risk control on reinsurance and investment (no-shorting) strategy for insurers with unknown expected terminal wealth. This project will fi rst solve the problem under traditional Black-Scholes model, where the problem is first embedded into an auxiliary stochastic linear-quadratic (LQ) control problem. Then a viscosity solution of Hamilton-Jacobi-Bellman (HJB) equations is identifi ed so as to derive the e fficient frontier and e fficient strategies explicitly by a verfi cation theorem. An extension on solving the problem under the stochastic volatility model will be studied as well.