A part consolidation design method for additive manufacturing based on product disassembly complexity

Parts with complex geometry have been divided into multiple parts due to manufacturing constraints of conventional manufacturing. However, since additive manufacturing (AM) is able to fabricate 3D objects in a layer-by-layer manner, design for AM has been researched to explore AM design benefits and...

Full description

Saved in:
Bibliographic Details
Main Authors: Kim, Samyeon, Moon, Seung Ki
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146252
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Parts with complex geometry have been divided into multiple parts due to manufacturing constraints of conventional manufacturing. However, since additive manufacturing (AM) is able to fabricate 3D objects in a layer-by-layer manner, design for AM has been researched to explore AM design benefits and alleviate manufacturing constraints of AM. To explore more AM design benefits, part consolidation has been researched for consolidating multiple parts into fewer number of parts at the manufacturing stage of product lifecycle. However, these studies have been less considered product recovery and maintenance at end-of-life stage. Consolidated parts for the manufacturing stage would not be beneficial at end-of-life stage and lead to unnecessary waste of materials during maintenance. Therefore, in this research, a design method is proposed to consolidate parts for considering maintenance and product recovery at the end-of-life stage by extending a modular identification method. Single part complexity index (SCCI) is introduced to measure part and interface complexities simultaneously. Parts with high SCCI values are grouped into modules that are candidates for part consolidation. Then the product disassembly complexity (PDC) can be used to measure disassembly complexity of a product before and after part consolidation. A case study is performed to demonstrate the usefulness of the proposed design method. The proposed method contributes to guiding how to consolidate parts for enhancing product recovery.