Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics

Therapeutic efficacy of synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) is limited by complex conjugation chemistry, absorption wavelength mismatch and inadequate biodegradability of the PDT-PTT agents. Herein, we designed biocompatible copper sulfide nanodot anchored folic aci...

Full description

Saved in:
Bibliographic Details
Main Authors: Jana, Deblin, Jia, Shaorui, Bindra, Anivind Kaur, Xing, Pengyao, Ding, Dan, Zhao, Yanli
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146314
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Therapeutic efficacy of synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) is limited by complex conjugation chemistry, absorption wavelength mismatch and inadequate biodegradability of the PDT-PTT agents. Herein, we designed biocompatible copper sulfide nanodot anchored folic acid-modified black phosphorus nanosheets (BP-CuS-FA) to overcome these limitations, consequently enhancing the therapeutic efficiency of PDT-PTT. In vitro and in vivo assays reveal good biocompatibility and commendable tumor inhibition efficacy of the BP-CuS-FA nanoconjugate owing to synergistic PTT-PDT mediated by near-infrared laser irradiation. Importantly, folic acid unit could target folate receptor overexpressed cancer cells, leading to enhanced cellular uptake of BP-CuS-FA. BP-CuS-FA also exhibits significant contrast effect for photoacoustic imaging, permitting its in vivo tracking. The photodegradable character of BP-CuS-FA is associated with better renal clearance after the antitumor therapy in vivo. The present research may facilitate further development on straightforward approaches for targeted and imaging-guided synergistic PDT-PTT of cancer.