Skew cyclic codes over F4R

This paper considers a new alphabet set, which is a ring that we call 4R, to construct linear error-control codes. Skew cyclic codes over this ring are then investigated in details. We define a nondegenerate inner product and provide a criteria to test for self-orthogonality. Results on the algebrai...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Benbelkacem, Nasreddin, Ezerman, Martianus Frederic, Abualrub, Taher, Aydin, Nuh, Batoul, Aicha
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/146375
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:This paper considers a new alphabet set, which is a ring that we call 4R, to construct linear error-control codes. Skew cyclic codes over this ring are then investigated in details. We define a nondegenerate inner product and provide a criteria to test for self-orthogonality. Results on the algebraic structures lead us to characterize 4R-skew cyclic codes. Interesting connections between the image of such codes under the Gray map to linear cyclic and skew-cyclic codes over 4 are shown. These allow us to learn about the relative dimension and distance profile of the resulting codes. Our setup provides a natural connection to DNA codes where additional biomolecular constraints must be incorporated into the design. We present a characterization of R-skew cyclic codes which are reversible complement.