Photo-acoustic tomographic image reconstruction from reduced data using physically inspired regularization
We propose a model-based image reconstruction method for photoacoustic tomography (PAT) involving a novel form of regularization and demonstrate its ability to recover good quality images from significantly reduced size datasets. The regularization is constructed to suit the physical structure of ty...
محفوظ في:
المؤلفون الرئيسيون: | Rejesh, Nadaparambil Aravindakshan, Kalva, Sandeep Kumar, Pramanik, Manojit, Arigovindan, Muthuvel |
---|---|
مؤلفون آخرون: | School of Chemical and Biomedical Engineering |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/146416 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Fractional regularization to improve photoacoustic tomographic image reconstruction
بواسطة: Prakash, Jaya, وآخرون
منشور في: (2019) -
Dimensionality reduced plug and play priors for improving photoacoustic tomographic imaging with limited noisy data
بواسطة: Awasthi, Navchetan, وآخرون
منشور في: (2021) -
Use of acoustic reflector to make a compact photoacoustic tomography system
بواسطة: Kalva, Sandeep Kumar, وآخرون
منشور في: (2017) -
Deep learning approach to improve tangential resolution in photoacoustic tomography
بواسطة: Rajendran, Praveenbalaji, وآخرون
منشور في: (2021) -
Spatially variant regularization based on model resolution and fidelity embedding characteristics improves photoacoustic tomography
بواسطة: Kalva, Sandeep Kumar, وآخرون
منشور في: (2018)