Gravitrap deployment for adult Aedes aegypti surveillance and its impact on dengue cases

House Index, Container Index, and Breteau Index are the most commonly used indices for dengue vector surveillance. However, these larval indices are a poor proxy for measuring the adult population-which is responsible for disease transmission. Information on the adult distribution and density are im...

Full description

Saved in:
Bibliographic Details
Main Authors: Ong, Janet, Chong, Chee-Seng, Yap, Grace, Lee, Caleb, Muhammad Aliff Abdul Razak, Chiang, Suzanna, Ng, Lee-Ching
Other Authors: School of Biological Sciences
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146426
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:House Index, Container Index, and Breteau Index are the most commonly used indices for dengue vector surveillance. However, these larval indices are a poor proxy for measuring the adult population-which is responsible for disease transmission. Information on the adult distribution and density are important for assessing transmission risk as well as for developing effective control strategies. This study introduces a new entomological index, Gravitrap aegypti index (GAI), which estimates the adult female Aedes aegypti population in the community and presents its association with dengue cases. Gravitraps were deployed across 34 treatment sites in Singapore from September 2013 to September 2016. The GAI, derived from the Gravitrap surveillance data, was analysed to investigate the spatio-temporal patterns of the Ae. aegypti population in Singapore. The index was further categorised into low, moderate, and high-risk groups and its association with dengue cases were examined. A Before-After Control Impact analysis was performed to evaluate the epidemiology impact of Gravitrap system on dengue transmission. The Ae. aegypti population exhibits a seasonal pattern, and spatial heterogeneity in Ae. aegypti abundance was observed among treatment sites. The Ae. aegypti population was also found to be unevenly distributed among floors of an apartment block, with low floors (floors 1-4) having a higher abundance of mosquitoes trapped than mid (floors 5-8) and high (floors ≥9) floors. Areas with high GAI were shown to have higher dengue case count. Gravitrap has also demonstrated to be a good dengue control tool. The contribution of cases by treatment sites to the national numbers was lower after Gravitraps deployment. The GAI, which is of better relevance to dengue transmission risk, could be recommended as an indicator for decision making in vector control efforts, and to monitor the spatio-temporal variability of the adult Aedes population in the country. In addition, findings from this study indicate that Gravitraps can be used as a dengue control tool to reduce dengue transmission.