NMR structure and localization of the host defense antimicrobial peptide thanatin in zwitterionic dodecylphosphocholine micelle : implications in antimicrobial activity
Antimicrobial peptides (AMPs) are potentially vital as the next generation of antibiotics against multidrug resistant bacterial pathogens. Thanatin, an insect derived pathogen inducible 21-residue long antimicrobial peptide, demonstrates antimicrobial activity toward broad range of pathogens. Thanat...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/146501 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Antimicrobial peptides (AMPs) are potentially vital as the next generation of antibiotics against multidrug resistant bacterial pathogens. Thanatin, an insect derived pathogen inducible 21-residue long antimicrobial peptide, demonstrates antimicrobial activity toward broad range of pathogens. Thanatin is an excellent candidate for antibiotics development due to potent in vivo activity in animal model and low toxicity to human cells. Recent studies indicated mode of action of thanatin could be intriguing and may comprise bacterial membrane permeabilization and interactions with periplasmic proteins. In order to better understand selectivity and membrane disruption, here, we determined 3-D structure of the thanatin in zwitterionic DPC-d38 micelle by NMR spectroscopy. The depth of insertion of thanatin into micelle structure was investigated by spin labelled doxyl lipids, 5-DSA and 16-DSA. DPC-bound structure of thanatin is defined by a -hairpin structure and an extended and turn conformations, for residues G1-I8, at the N-terminus. The -hairpin structure is delineated by two antiparallel -strands, residues I9-C11 and residues K17-R20, which is connected by loop consisted of residues N12-G16. There are cross -strands sidechain-sidechain packing interactions among hydrophobic and aromatic residues. Spin labelled lipid studies revealed a set of spatially proximal residues V6, I8, Q19, R20 and M21 may be deeply inserted into the hydrophobic core of the DPC micelle. Whilst, residues including those at the turn/loop are merely surface localized. The atomic resolution structure and orientation of thanatin in zwitterionic DPC micelle may be utilized for understating mode of action in lipid membrane and further development of non-toxic analogs. |
---|