Ternary hypervalent silicon hydrides via lithium at high pressure
Hydrogen is rarely observed as a ligand in hypervalent species, however, we find that high-pressure hydrogenation may stabilize hypervalent hydrogen-rich materials. Focusing on ternary silicon hydrides via lithium doping, we find anions composed of hypervalent silicon with H ligands formed under hig...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/146521 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Hydrogen is rarely observed as a ligand in hypervalent species, however, we find that high-pressure hydrogenation may stabilize hypervalent hydrogen-rich materials. Focusing on ternary silicon hydrides via lithium doping, we find anions composed of hypervalent silicon with H ligands formed under high pressure. Our results reveal two different hypervalent anions: layered SiH5− and tricapped triangular prismatic SiH62−. These differ from octahedral SiH62− described in earlier studies. In addition, there are further hydrogen-rich structures, Li3SiH10 and Li2SiH6+δ, which may be stabilized at high pressure. Our work provides pointers to future investigations on hydrogen-rich materials. |
---|