Transfer learning for scalability of neural-network quantum states
Neural-network quantum states have shown great potential for the study of many-body quantum systems. In statistical machine learning, transfer learning designates protocols reusing features of a machine learning model trained for a problem to solve a possibly related but different problem. We propos...
Saved in:
Main Authors: | Zen, Remmy, My, Long, Tan, Ryan, Hébert, Frédéric, Gattobigio, Mario, Miniatura, Christian, Poletti, Dario, Bressan, Stéphane |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/146572 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |
相似書籍
-
TRANSFER LEARNING FOR NEURAL-NETWORK QUANTUM STATES
由: REMMY AUGUSTA MENZATA ZEN
出版: (2022) -
Entanglement in quantum spin chains
由: YUKI TAKAHASHI
出版: (2010) -
Simulation of Quantum Algorithm Using Modified Qubit Rotation
由: Sombillo, Neris I.
出版: (2023) -
Spin current characteristics in a quantum dot-ferromagnetic contacts sandwich structure
由: Chen, W., et al.
出版: (2014) -
MANY-BODY LOCALIZED EIGENSTATES AND SCALABLE QUANTUM COMPUTATION OF HAMILTONIAN SPECTRA
由: CHIEW SHAO HEN
出版: (2023)