Adaptive range composite differential evolution for fast optimal reactive power dispatch

This paper proposes a novel adaptive range composite differential evolution (ARCoDE) algorithm to efficiently and accurately solve optimal reactive power dispatch (ORPD) problem. Because of a novel adaptive range strategy for control parameters, the proposed ARCoDE possesses superior exploration and...

Full description

Saved in:
Bibliographic Details
Main Authors: Niu, Ming, Xu, Ning Zhou, Dong, He Nan, Ge, Yang Yang, Liu, Yi Tao, Ngin, Hoon Tong
Other Authors: Experimental Power Grid Centre
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146655
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This paper proposes a novel adaptive range composite differential evolution (ARCoDE) algorithm to efficiently and accurately solve optimal reactive power dispatch (ORPD) problem. Because of a novel adaptive range strategy for control parameters, the proposed ARCoDE possesses superior exploration and exploitation capabilities that can efficiently handle the ORPD problem involving complicated constraints and discrete and continuous variables. This has been demonstrated in case studies using the IEEE optimal power flow testbeds considering complex wind and demand scenarios. The superior performance of ARCoDE has been further validated through comparisons with several award-winning algorithms in 2014 IEEE Competition on “Application of Modern Heuristic Optimization Algorithms for Solving Optimal Power Flow Problems”, given limited iterations of in evolutionary optimization process.