Dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections

Airports across the world are expanding by building multiple ground control towers and resorting to complex taxiway and runway system, in response to growing air traffic. Current outcome- based ground safety management at the airside may impede our potential to learn from and adapt to evolving air tr...

Full description

Saved in:
Bibliographic Details
Main Authors: Ali, Hasnain, Delair, Raphael, Pham, Duc-Thinh, Alam, Sameer, Schultz, Michael
Other Authors: School of Mechanical and Aerospace Engineering
Format: Conference or Workshop Item
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146689
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-146689
record_format dspace
spelling sg-ntu-dr.10356-1466892021-03-06T20:10:33Z Dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections Ali, Hasnain Delair, Raphael Pham, Duc-Thinh Alam, Sameer Schultz, Michael School of Mechanical and Aerospace Engineering 2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT) AI and Data Science Air Traffic Management Research Institute Science::Mathematics::Probability theory Airside Operations Taxiway Airports across the world are expanding by building multiple ground control towers and resorting to complex taxiway and runway system, in response to growing air traffic. Current outcome- based ground safety management at the airside may impede our potential to learn from and adapt to evolving air traffic scenarios, owing to the sparsity of accidents when compared with number of daily airside operations. To augment airside ground safety at Singapore Changi airport, in this study, we predict dynamic hot spots- areas where multiple aircraft may come in close vicinity on taxiways, as pre-cursor events to airside conflicts. We use airside infrastructure and A-SMGCS operations data of Changi airport to model aircraft arrival at different taxiway intersections both in temporal and spatial dimensions. The statistically learnt spatial-temporal model is then used to compute conflict probability at identified intersections, in order to evaluate conflict coefficients or hotness values of hot spots. These hot spots are then visually displayed on the aerodrome diagram for heightened attention of ground ATCOs. In the Subjective opinion of Ground Movement Air Traffic Controller, highlighted Hot Spots make sense and leads to better understanding of taxiway movements and increased situational awareness. Future research shall incorporate detailed human-in-the-loop validation of the dynamic hot spot model by ATCOs in 360 degree tower simulator. Accepted version 2021-03-05T02:13:42Z 2021-03-05T02:13:42Z 2020 Conference Paper Ali, H., Delair, R., Pham, D.-T., Alam, S., & Schultz, M. (2020). Dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections. Proceedings of International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT), 1-10. doi:10.1109/AIDA-AT48540.2020.9049186 https://hdl.handle.net/10356/146689 10.1109/AIDA-AT48540.2020.9049186 1 10 en © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: https://doi.org/10.1109/AIDA-AT48540.2020.9049186 application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Science::Mathematics::Probability theory
Airside Operations
Taxiway
spellingShingle Science::Mathematics::Probability theory
Airside Operations
Taxiway
Ali, Hasnain
Delair, Raphael
Pham, Duc-Thinh
Alam, Sameer
Schultz, Michael
Dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections
description Airports across the world are expanding by building multiple ground control towers and resorting to complex taxiway and runway system, in response to growing air traffic. Current outcome- based ground safety management at the airside may impede our potential to learn from and adapt to evolving air traffic scenarios, owing to the sparsity of accidents when compared with number of daily airside operations. To augment airside ground safety at Singapore Changi airport, in this study, we predict dynamic hot spots- areas where multiple aircraft may come in close vicinity on taxiways, as pre-cursor events to airside conflicts. We use airside infrastructure and A-SMGCS operations data of Changi airport to model aircraft arrival at different taxiway intersections both in temporal and spatial dimensions. The statistically learnt spatial-temporal model is then used to compute conflict probability at identified intersections, in order to evaluate conflict coefficients or hotness values of hot spots. These hot spots are then visually displayed on the aerodrome diagram for heightened attention of ground ATCOs. In the Subjective opinion of Ground Movement Air Traffic Controller, highlighted Hot Spots make sense and leads to better understanding of taxiway movements and increased situational awareness. Future research shall incorporate detailed human-in-the-loop validation of the dynamic hot spot model by ATCOs in 360 degree tower simulator.
author2 School of Mechanical and Aerospace Engineering
author_facet School of Mechanical and Aerospace Engineering
Ali, Hasnain
Delair, Raphael
Pham, Duc-Thinh
Alam, Sameer
Schultz, Michael
format Conference or Workshop Item
author Ali, Hasnain
Delair, Raphael
Pham, Duc-Thinh
Alam, Sameer
Schultz, Michael
author_sort Ali, Hasnain
title Dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections
title_short Dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections
title_full Dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections
title_fullStr Dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections
title_full_unstemmed Dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections
title_sort dynamic hot spot prediction by learning spatial-temporal utilization of taxiway intersections
publishDate 2021
url https://hdl.handle.net/10356/146689
_version_ 1695706233408847872