Dark-state sideband cooling in an atomic ensemble
We utilize the dark state in a ∧-type three-level system to cool an ensemble of ⁸⁵Rb atoms in an optical lattice [Morigi et al., Phys. Rev. Lett. 85, 4458 (2000)]. The common suppression of the carrier transition of atoms with different vibrational frequencies allows them to reach a subrecoil temper...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/146879 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We utilize the dark state in a ∧-type three-level system to cool an ensemble of ⁸⁵Rb atoms in an optical lattice [Morigi et al., Phys. Rev. Lett. 85, 4458 (2000)]. The common suppression of the carrier transition of atoms with different vibrational frequencies allows them to reach a subrecoil temperature of 100 nK after being released from the optical lattice. A nearly zero vibrational quantum number is determined from the time-of-flight measurements and adiabatic expansion process. The features of sideband cooling are examined in various parameter spaces. Our results show that dark-state sideband cooling is a simple and compelling method for preparing a large ensemble of atoms into their vibrational ground state of a harmonic potential and can be generalized to different species of atoms and molecules for studying ultracold physics that demands recoil temperature and below. |
---|