Fatigue investigations on steel pipeline containing 3D coplanar and non-coplanar cracks

Fluctuated loadings from currents, waves and sea ground motions are observed on offshore steel pipelines, and they will result in small cracks to propagate continuously and cause unexpected damage to offshore/geotechnical infrastructures. In spite of the availability of efficient techniques and high...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiao, Zhongmin, Zhang, Wengang, Zhang, Yanmei, Fan, Mu
Other Authors: School of Mechanical and Aerospace Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/146881
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Fluctuated loadings from currents, waves and sea ground motions are observed on offshore steel pipelines, and they will result in small cracks to propagate continuously and cause unexpected damage to offshore/geotechnical infrastructures. In spite of the availability of efficient techniques and high-power computers for solving crack problems, investigations on the fatigue life of offshore pipelines with 3D interacting cracks are still rarely found in open literature. In the current study, systematic numerical investigations are performed on fatigue crack growth behaviours of offshore pipelines containing coplanar and non-coplanar cracks. Extended finite element method (XFEM) is adopted to simulate the fatigue crack growth. The qualitative validations of numerical results are made for certain cases with available experimental results. Parametric studies are conducted to investigate the influences of various important parameters on fatigue crack growth. The results will be helpful to assess the fatigue behaviours of steel pipeline with 3D interacting cracks.