Identification of critical links in a large-scale road network considering the traffic flow betweenness index

The traditional full-scan method is commonly used for identifying critical links in road networks. This method simulates each link to be closed iteratively and measures its impact on the efficiency of the whole network. It can accurately identify critical links. However, in this method, traffic assi...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Feiyan, Jia, Hongfei, Luo, Qingyu, Li, Yongxing, Yang, Lili
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/147083
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-147083
record_format dspace
spelling sg-ntu-dr.10356-1470832021-03-26T03:27:49Z Identification of critical links in a large-scale road network considering the traffic flow betweenness index Li, Feiyan Jia, Hongfei Luo, Qingyu Li, Yongxing Yang, Lili School of Civil and Environmental Engineering Engineering::Civil engineering Cities Computerized Simulations The traditional full-scan method is commonly used for identifying critical links in road networks. This method simulates each link to be closed iteratively and measures its impact on the efficiency of the whole network. It can accurately identify critical links. However, in this method, traffic assignments are conducted under all scenarios of link disruption, making this process prohibitively time-consuming for large-scale road networks. This paper proposes an approach considering the traffic flow betweenness index (TFBI) to identify critical links, which can significantly reduce the computational burden compared with the traditional full-scan method. The TFBI consists of two parts: traffic flow betweenness and endpoint origin-destination (OD) demand (rerouted travel demand). There is a weight coefficient between these two parts. Traffic flow betweenness is established by considering the shortest travel-time path betweenness, link traffic flow and total OD demand. The proposed approach consists of the following main steps. First, a sample road network is selected to calibrate the weight coefficient between traffic flow betweenness and endpoint OD demand in the TFBI using the network robustness index. This index calculates changes in the whole-system travel time due to each link's closure under the traditional full-scan method. Then, candidate critical links are pre-selected according to the TFBI value of each link. Finally, a given number of real critical links are identified from the candidate critical links using the traditional full-scan method. The applicability and computational efficiency of the TFBI-based approach are demonstrated for the road network in Changchun, China. Published version 2021-03-26T03:27:48Z 2021-03-26T03:27:48Z 2020 Journal Article Li, F., Jia, H., Luo, Q., Li, Y. & Yang, L. (2020). Identification of critical links in a large-scale road network considering the traffic flow betweenness index. PloS One, 15(4). https://dx.doi.org/10.1371/journal.pone.0227474 1932-6203 https://hdl.handle.net/10356/147083 10.1371/journal.pone.0227474 32275666 2-s2.0-85083174532 4 15 en PloS One © 2020 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Civil engineering
Cities
Computerized Simulations
spellingShingle Engineering::Civil engineering
Cities
Computerized Simulations
Li, Feiyan
Jia, Hongfei
Luo, Qingyu
Li, Yongxing
Yang, Lili
Identification of critical links in a large-scale road network considering the traffic flow betweenness index
description The traditional full-scan method is commonly used for identifying critical links in road networks. This method simulates each link to be closed iteratively and measures its impact on the efficiency of the whole network. It can accurately identify critical links. However, in this method, traffic assignments are conducted under all scenarios of link disruption, making this process prohibitively time-consuming for large-scale road networks. This paper proposes an approach considering the traffic flow betweenness index (TFBI) to identify critical links, which can significantly reduce the computational burden compared with the traditional full-scan method. The TFBI consists of two parts: traffic flow betweenness and endpoint origin-destination (OD) demand (rerouted travel demand). There is a weight coefficient between these two parts. Traffic flow betweenness is established by considering the shortest travel-time path betweenness, link traffic flow and total OD demand. The proposed approach consists of the following main steps. First, a sample road network is selected to calibrate the weight coefficient between traffic flow betweenness and endpoint OD demand in the TFBI using the network robustness index. This index calculates changes in the whole-system travel time due to each link's closure under the traditional full-scan method. Then, candidate critical links are pre-selected according to the TFBI value of each link. Finally, a given number of real critical links are identified from the candidate critical links using the traditional full-scan method. The applicability and computational efficiency of the TFBI-based approach are demonstrated for the road network in Changchun, China.
author2 School of Civil and Environmental Engineering
author_facet School of Civil and Environmental Engineering
Li, Feiyan
Jia, Hongfei
Luo, Qingyu
Li, Yongxing
Yang, Lili
format Article
author Li, Feiyan
Jia, Hongfei
Luo, Qingyu
Li, Yongxing
Yang, Lili
author_sort Li, Feiyan
title Identification of critical links in a large-scale road network considering the traffic flow betweenness index
title_short Identification of critical links in a large-scale road network considering the traffic flow betweenness index
title_full Identification of critical links in a large-scale road network considering the traffic flow betweenness index
title_fullStr Identification of critical links in a large-scale road network considering the traffic flow betweenness index
title_full_unstemmed Identification of critical links in a large-scale road network considering the traffic flow betweenness index
title_sort identification of critical links in a large-scale road network considering the traffic flow betweenness index
publishDate 2021
url https://hdl.handle.net/10356/147083
_version_ 1695636083457392640