Deep cycling for high‐capacity Li‐ion batteries

As the practical capacity of conventional Li‐ion batteries (LIBs) approaches the theoretical limit, which is determined by the rocking‐chair cycling architecture, a new cycling architecture with higher capacity is highly demanded for future development and electronic applications. Here, a deep‐cycli...

Full description

Saved in:
Bibliographic Details
Main Authors: Xia, Huarong, Tang, Yuxin, Malyi, Oleksandr I., Zhu, Zhiqiang, Zhang, Yanyan, Zhang, Wei, Ge, Xiang, Zeng, Yi, Chen, Xiaodong
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/147127
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:As the practical capacity of conventional Li‐ion batteries (LIBs) approaches the theoretical limit, which is determined by the rocking‐chair cycling architecture, a new cycling architecture with higher capacity is highly demanded for future development and electronic applications. Here, a deep‐cycling architecture intrinsically with a higher theoretical capacity limit than conventional rocking‐chair cycling architecture is developed, by introducing a follow‐up cycling process to contribute more capacity. The deep‐cycling architecture makes full use of movable ions in both of the electrolyte and electrodes for energy storage, rather than in either the electrolyte or the electrodes. Taking LiMn2O4‐mesocarbon microbeads (MCMB)/Li cells as a proof‐of‐concept, 57.7% more capacity is obtained. Moreover, the capacity retention is as high as 84.4% after 2000 charging/discharging cycles. The deep‐cycling architecture offers opportunities to break the theoretical capacity limit of conventional LIBs and makes high demands for new‐type of cathode materials, which will promote the development of next‐generation energy storage devices.