Three new constructions of asymptotically optimal periodic quasi-complementary sequence sets with small alphabet sizes

Quasi-complementary sequence sets (QCSSs) play an important role in multi-carrier code-division multiple-access (MC-CDMA) systems. They can support more users than perfect complementary sequence sets in MC-CDMA systems. It is desirable to design QCSSs with good parameters that are a trade-off o...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Luo, Gaojun, Cao, Xiwang, Shi, Minjia, Helleseth, Tor
مؤلفون آخرون: School of Physical and Mathematical Sciences
التنسيق: مقال
اللغة:English
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/147219
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Quasi-complementary sequence sets (QCSSs) play an important role in multi-carrier code-division multiple-access (MC-CDMA) systems. They can support more users than perfect complementary sequence sets in MC-CDMA systems. It is desirable to design QCSSs with good parameters that are a trade-off of large set size, small periodic maximum magnitude correlation and small alphabet size. The main results are to construct new infinite families of QCSSs that all have small alphabet size and asymptotically optimal periodic maximum magnitude correlation. In this paper, we propose three new constructions of QCSSs using additive characters over finite fields. Notably, these QCSSs have new parameters and small alphabet sizes. Using the properties of characters and character sums, we determine their maximum periodic correlation magnitudes and prove that these QCSSs are asymptotically optimal with respect to the lower bound.