導出完成 — 

Error-correcting output codes with ensemble diversity for robust learning in neural networks

Though deep learning has been applied successfully in many scenarios, malicious inputs with human-imperceptible perturbations can make it vulnerable in real applications. This paper proposes an error-correcting neural network (ECNN) that combines a set of binary classifiers to combat adversarial exam...

全面介紹

Saved in:
書目詳細資料
Main Authors: Song, Yang, Kang, Qiyu, Tay, Wee Peng
其他作者: School of Electrical and Electronic Engineering
格式: Conference or Workshop Item
語言:English
出版: 2021
主題:
在線閱讀:https://hdl.handle.net/10356/147336
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English