Error-correcting output codes with ensemble diversity for robust learning in neural networks
Though deep learning has been applied successfully in many scenarios, malicious inputs with human-imperceptible perturbations can make it vulnerable in real applications. This paper proposes an error-correcting neural network (ECNN) that combines a set of binary classifiers to combat adversarial exam...
Saved in:
Main Authors: | , , |
---|---|
其他作者: | |
格式: | Conference or Workshop Item |
語言: | English |
出版: |
2021
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/147336 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Nanyang Technological University |
語言: | English |