Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage
Confining nanostructured electrode materials in porous carbon represents an effective strategy for improving the electrochemical performance of lithium-ion batteries. Herein, we report the design and synthesis of hybrid hollow nanostructures composed of highly dispersed Co3 O4 hollow nanoparticles (...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/147392 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Confining nanostructured electrode materials in porous carbon represents an effective strategy for improving the electrochemical performance of lithium-ion batteries. Herein, we report the design and synthesis of hybrid hollow nanostructures composed of highly dispersed Co3 O4 hollow nanoparticles (sub-20 nm) embedded in the mesoporous walls of carbon nanoboxes (denoted as H-Co3 O4 @MCNBs) as an anode material for lithium-ion batteries. The facile metal-organic framework (MOF)-engaged strategy for the synthesis of H-Co3 O4 @MCNBs involves chemical etching-coordination and subsequent two-step annealing treatments. Owing to the unique structural merits including more active interfacial sites, effectively alleviated volume variation, good and stable electrical contact, and easy access of Li+ ions, the H-Co3 O4 @MCNBs exhibit excellent lithium-storage performance in terms of high specific capacity, excellent rate capability, and cycling stability. |
---|