Fabrication of CdS frame-in-cage particles for efficient photocatalytic hydrogen generation under visible-light irradiation

The design of advanced structures for semiconductor photocatalysts is an effective approach to enhance their performance toward solar‐to‐chemical energy conversion. Hollow and frame‐like structures show advantageous features for photocatalytic reactions with enlarged surface area, shortened charge‐t...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Peng, Luan, Deyan, Lou, David Xiong Wen
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/147393
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:The design of advanced structures for semiconductor photocatalysts is an effective approach to enhance their performance toward solar‐to‐chemical energy conversion. Hollow and frame‐like structures show advantageous features for photocatalytic reactions with enlarged surface area, shortened charge‐transfer distance, promoted light‐absorption ability, and enhanced mass‐transfer capability. Here, a facile two‐step sulfidation strategy is developed to fabricate unique CdS frame‐in‐cage particles for photocatalytic hydrogen generation. Cd‐based Prussian blue analog (Cd‐PBA) cubes are first converted to Cd‐PBA cube‐in‐CdS cage particles, which are further transformed to CdS frame‐in‐cage particles. Benefiting from the novel frame‐in‐cage structure, the obtained CdS photocatalyst exhibits high activity under visible‐light irradiation with the hydrogen generation rate of 13.6 mmol h−1 g−1, which is much enhanced compared with those of the CdS cubes and cages.