Future demand and optimum distribution of droneports
Due to the growing usage of Unmanned Aerial Vehicles (UAVs, or drones) in commercial, civil, and military applications, thousands of drones are expected in the urban airspace for many decades to come. The large traffic volume of drones brings many concerns about safety issues especially during the t...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/147460 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-147460 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1474602021-04-24T20:10:37Z Future demand and optimum distribution of droneports Zeng, Yixi Low, Kin Huat Schultz, Michael Duong, Vu N. 2020 IEEE International Conference on Intelligent Transportation Systems (ITSC) Air Traffic Management Research Institute Engineering Drones Optimization Due to the growing usage of Unmanned Aerial Vehicles (UAVs, or drones) in commercial, civil, and military applications, thousands of drones are expected in the urban airspace for many decades to come. The large traffic volume of drones brings many concerns about safety issues especially during the taking-off, approaching, and landing phases when most accidents and incidents occur. In this paper, a facility called droneport is conceived to accommodate and manage assorted drones taking off and landing in a protected space under air traffic control. We present several contributions to the concept of droneport: (1) The future delivery drone demand was forecasted using historical online retailer data and the Holt-Winters’ seasonal method. (2) The optimum number and distribution of droneports were determined by a multi-objective optimization model considering both costs and societal value from six aspects: maximizing e-commerce demand coverage, airtaxi demand coverage, subzone coverage, and area coverage, and minimizing service distance for both parcel and passenger delivery drones. (3) The optimization model integrates Gaussian noise to make the measurement of service distance more practical. (4) The future capacity of each droneport was estimated based on the number of droneports and their placement. A real-world case study was carried out for Singapore. Overall, this paper presented an intuitive and efficient optimization model for the placement of droneports with predicted drone demand and forecasted the capacity of each droneport. Civil Aviation Authority of Singapore (CAAS) Accepted version This research is supported by the Civil Aviation Authority of Singapore and Nanyang Technological University, Singapore under their collaboration in the Air Traffic Management Research Institute. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not reflect the views of the Civil Aviation Authority of Singapore. 2021-04-22T06:30:21Z 2021-04-22T06:30:21Z 2020 Conference Paper Zeng, Y., Low, K. H., Schultz, M. & Duong, V. N. (2020). Future demand and optimum distribution of droneports. 2020 IEEE International Conference on Intelligent Transportation Systems (ITSC). https://dx.doi.org/10.1109/ITSC45102.2020.9294283 https://hdl.handle.net/10356/147460 10.1109/ITSC45102.2020.9294283 en © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: https://doi.org/10.1109/ITSC45102.2020.9294283 application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering Drones Optimization |
spellingShingle |
Engineering Drones Optimization Zeng, Yixi Low, Kin Huat Schultz, Michael Duong, Vu N. Future demand and optimum distribution of droneports |
description |
Due to the growing usage of Unmanned Aerial Vehicles (UAVs, or drones) in commercial, civil, and military applications, thousands of drones are expected in the urban airspace for many decades to come. The large traffic volume of drones brings many concerns about safety issues especially during the taking-off, approaching, and landing phases when most accidents and incidents occur. In this paper, a facility called droneport is conceived to accommodate and manage assorted drones taking off and landing in a protected space under air traffic control. We present several contributions to the concept of droneport: (1) The future delivery drone demand was forecasted using historical online retailer data and the Holt-Winters’ seasonal method. (2) The optimum number and distribution of droneports were determined by a multi-objective optimization model considering both costs and societal value from six aspects: maximizing e-commerce demand coverage, airtaxi demand coverage, subzone coverage, and area coverage, and minimizing service distance for both parcel and passenger delivery drones. (3) The optimization model integrates Gaussian noise to make the measurement of service distance more practical. (4) The future capacity of each droneport was estimated based on the number of droneports and their placement. A real-world case study was carried out for Singapore. Overall, this paper presented an intuitive and efficient optimization model for the placement of droneports with predicted drone demand and forecasted the capacity of each droneport. |
author2 |
2020 IEEE International Conference on Intelligent Transportation Systems (ITSC) |
author_facet |
2020 IEEE International Conference on Intelligent Transportation Systems (ITSC) Zeng, Yixi Low, Kin Huat Schultz, Michael Duong, Vu N. |
format |
Conference or Workshop Item |
author |
Zeng, Yixi Low, Kin Huat Schultz, Michael Duong, Vu N. |
author_sort |
Zeng, Yixi |
title |
Future demand and optimum distribution of droneports |
title_short |
Future demand and optimum distribution of droneports |
title_full |
Future demand and optimum distribution of droneports |
title_fullStr |
Future demand and optimum distribution of droneports |
title_full_unstemmed |
Future demand and optimum distribution of droneports |
title_sort |
future demand and optimum distribution of droneports |
publishDate |
2021 |
url |
https://hdl.handle.net/10356/147460 |
_version_ |
1698713715411517440 |