Skyrmion-(anti) vortex coupling in a chiral magnet-superconductor heterostructure
We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ≈50 nm is sufficient to nucleate antivortices in a 25 nm Nb film, with unique signatures in the magnetization, critical current, and flux dynamics, c...
Saved in:
Main Authors: | , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/147637 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ≈50 nm is sufficient to nucleate antivortices in a 25 nm Nb film, with unique signatures in the magnetization, critical current, and flux dynamics, corroborated via simulations. We also detect a thermally tunable Rashba-Edelstein exchange coupling in the isolated skyrmion phase. This realization of a strongly interacting skyrmion-(anti)vortex system opens a path toward controllable topological hybrid materials, unattainable to date. |
---|