Genetic algorithm based EV scheduling for on-demand public transit system
The popularity of real-time on-demand transit as a fast evolving mobility service has paved the way to explore novel solutions for point-to-point transit requests. In addition, strict government regulations on greenhouse gas emission calls for energy efficient transit solutions. To this end, we prop...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/147722 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The popularity of real-time on-demand transit as a fast evolving mobility service has paved the way to explore novel solutions for point-to-point transit requests. In addition, strict government regulations on greenhouse gas emission calls for energy efficient transit solutions. To this end, we propose an on-demand public transit system using a fleet of heterogeneous electric vehicles, which provides real-time service to passengers by linking a zone to a predetermined rapid transit node. Subsequently, we model the problem using a Genetic Algorithm, which generates routes and schedules in real-time while minimizing passenger travel time. Experiments performed using a real map show that the proposed algorithm not only generates near-optimal results but also advances the state-of-the-art at a marginal cost of computation time. |
---|