Hybrid genetic algorithm for an on-demand first mile transit system using electric vehicles

First/Last mile gaps are a significant hurdle in large scale adoption of public transit systems. Recently, demand responsive transit systems have emerged as a preferable solution to first/last mile problem. However, existing work requires significant computation time or advance bookings. Hence, we p...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Perera, Thilina, Prakash, Alok, Gamage, Chathura Nagoda, Srikanthan, Thambipillai
مؤلفون آخرون: School of Computer Science and Engineering
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/147728
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:First/Last mile gaps are a significant hurdle in large scale adoption of public transit systems. Recently, demand responsive transit systems have emerged as a preferable solution to first/last mile problem. However, existing work requires significant computation time or advance bookings. Hence, we propose a public transit system linking the neighborhoods to a rapid transit node using a fleet of demand responsive electric vehicles, which reacts to passenger demand in real-time. Initially, the system is modeled using an optimal mathematical formulation. Owing to the complexity of the model, we then propose a hybrid genetic algorithm that computes results in real-time with an average accuracy of 98%. Further, results show that the proposed system saves travel time up to 19% compared to the existing transit services.