Exploration of a gallic acid-based alternative to bisphenol A
Epoxies are used in a wide variety of applications in plastics and composites due to their excellent material properties. These properties are attributed to the aromatic rings present in their structure. However, the source of these aromatic rings is bisphenol A, one of the compounds responsible for...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/147733 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-147733 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1477332023-03-04T15:45:36Z Exploration of a gallic acid-based alternative to bisphenol A Muhammad Naziruddin Mohd Ali Aravind Dasari School of Materials Science and Engineering aravind@ntu.edu.sg Engineering::Materials Epoxies are used in a wide variety of applications in plastics and composites due to their excellent material properties. These properties are attributed to the aromatic rings present in their structure. However, the source of these aromatic rings is bisphenol A, one of the compounds responsible for the deterioration of human health and the environment. Thus, there is a drive to replace bisphenol A with less hazardous substitutes in plastic production. This project aimed to synthesize an alternative to bisphenol A, inspired by its di-functional structure. The base material chosen was gallic acid, a naturally-derived phenolic acid from the tannins of plants. Two gallic acid molecules were linked by a di-functional bridge to mimic the structure of bisphenol A. This bridge can be customized to introduce tailor-made properties. The project assessed two routes for the synthesis of the bridge: a diol and a diamine. Through the evaluation of the routes, we chose to focus on the N,N’-dicyclohexylcarbodiimide (DCC) route as it had the most advantages. This route created the product, N,N'-(1,4-phenylene)bis(3,4,5-tris(oxiran-2-ylmethoxy)benzamide), Glycidyl Phenylene-Gallic Amide (GPDA). Synthesized products were then characterized through differential scanning calorimetry, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and high-performance liquid chromatography. These provided insights to the outcome of the synthesis steps and evaluated the thermal properties of the GPDA resin. Bachelor of Engineering (Materials Engineering) 2021-04-12T13:02:32Z 2021-04-12T13:02:32Z 2021 Final Year Project (FYP) Muhammad Naziruddin Mohd Ali (2021). Exploration of a gallic acid-based alternative to bisphenol A. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/147733 https://hdl.handle.net/10356/147733 en application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Materials |
spellingShingle |
Engineering::Materials Muhammad Naziruddin Mohd Ali Exploration of a gallic acid-based alternative to bisphenol A |
description |
Epoxies are used in a wide variety of applications in plastics and composites due to their excellent material properties. These properties are attributed to the aromatic rings present in their structure. However, the source of these aromatic rings is bisphenol A, one of the compounds responsible for the deterioration of human health and the environment. Thus, there is a drive to replace bisphenol A with less hazardous substitutes in plastic production. This project aimed to synthesize an alternative to bisphenol A, inspired by its di-functional structure. The base material chosen was gallic acid, a naturally-derived phenolic acid from the tannins of plants. Two gallic acid molecules were linked by a di-functional bridge to mimic the structure of bisphenol A. This bridge can be customized to introduce tailor-made properties. The project assessed two routes for the synthesis of the bridge: a diol and a diamine. Through the evaluation of the routes, we chose to focus on the N,N’-dicyclohexylcarbodiimide (DCC) route as it had the most advantages. This route created the product, N,N'-(1,4-phenylene)bis(3,4,5-tris(oxiran-2-ylmethoxy)benzamide), Glycidyl Phenylene-Gallic Amide (GPDA). Synthesized products were then characterized through differential scanning calorimetry, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and high-performance liquid chromatography. These provided insights to the outcome of the synthesis steps and evaluated the thermal properties of the GPDA resin. |
author2 |
Aravind Dasari |
author_facet |
Aravind Dasari Muhammad Naziruddin Mohd Ali |
format |
Final Year Project |
author |
Muhammad Naziruddin Mohd Ali |
author_sort |
Muhammad Naziruddin Mohd Ali |
title |
Exploration of a gallic acid-based alternative to bisphenol A |
title_short |
Exploration of a gallic acid-based alternative to bisphenol A |
title_full |
Exploration of a gallic acid-based alternative to bisphenol A |
title_fullStr |
Exploration of a gallic acid-based alternative to bisphenol A |
title_full_unstemmed |
Exploration of a gallic acid-based alternative to bisphenol A |
title_sort |
exploration of a gallic acid-based alternative to bisphenol a |
publisher |
Nanyang Technological University |
publishDate |
2021 |
url |
https://hdl.handle.net/10356/147733 |
_version_ |
1759858138624819200 |