Fabric based water energy harvesting

With water covering more than 70% of the Earth’s surface, natural and sustainable sources such as the ocean and rainfall have substantial potential in being converted to electricity. This has garnered considerable attention in designing water triboelectric nanogenerators (WTENG) to self-power sma...

Full description

Saved in:
Bibliographic Details
Main Author: Hong, Trica Li Xuan
Other Authors: Lee Pooi See
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/147779
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:With water covering more than 70% of the Earth’s surface, natural and sustainable sources such as the ocean and rainfall have substantial potential in being converted to electricity. This has garnered considerable attention in designing water triboelectric nanogenerators (WTENG) to self-power smart clothing and wearable electronics. Specifically, harvesting electricity from flowing water through triboelectrification has not yet been firmly established to date in terms of durability on textiles, thereby limiting its practicality for prolonged usage. Herein, this project aims to study the effect of binder concentrations on the adhesion of nanoparticles on fabrics, as well the potential trade-offs on its triboelectric performance. The PET fabrics were dipcoated in silica (SiO2) - PDMS solution to achieve hydrophobicity and serve as the negative triboelectric layer. Various characterisations were conducted to determine the changes to its properties as well as its durability under washing and deliberate adhesion. Overall, the fabric based WTENG with area 0.0004 m2 recorded a maximum voltage and current output of 1.38 V and 20 nA respectively under the flow of water using a dropper. Increasing the WTENG device size and water flow speed would very likely demonstrate better electrical output, based on the theory of larger area charge density as well as the results from the pump experiments performed.