Novel materials applications in botany

Global food demand is expected to significantly increase by 2050, nanotechnology has been applied to find alternative ways to increase crop production. Titanium dioxide is a widely used photocatalyst, and titanium dioxide nanoparticles (TiO2 NPs) were reported to increase the rate of photosynthesis...

Full description

Saved in:
Bibliographic Details
Main Author: Lim, Hui Qi
Other Authors: Lam Yeng Ming
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/147933
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Global food demand is expected to significantly increase by 2050, nanotechnology has been applied to find alternative ways to increase crop production. Titanium dioxide is a widely used photocatalyst, and titanium dioxide nanoparticles (TiO2 NPs) were reported to increase the rate of photosynthesis which increases crop yield. Hence, this report is to study the effect of synthesis conditions on the synthesised particles. Furthermore to monitor the effect of synthesised particles on plant growth. The TiO2 NPs were synthesised using a low temperature hydrothermal method and the sol-gel method. In results, physical parameters included size and phase of the synthesised nanoparticles were compared. It was found that the sol-gel method achieved higher anatase percentage and a smaller particle size than the hydrothermal method. Different reaction times for the hydrothermal reaction also gave different percentage of anatase and brookite phases. TiO2 NPs from the hydrothermal method were applied onto Solanum lycopersicum (tomato), the chlorophyll content measurements were taken for a period of two weeks. TiO2 NPs have shown significant impact in increasing the plant growth, and the size and phase of the NPs were also observed to affect the effectiveness in plant growth.