Applying interpolation-constrained autoencoders to world models approach reinforcement learning

World Models Approach Reinforcement Learning helps to tackle complex problems by breaking down the learning task to Vision Model, Memory Model, and Controller Model. Variational Autoencoder (VAE) is commonly used for Vision Model. However, there has been development of other variants of Autoencoders...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Kevin Winata
مؤلفون آخرون: Zinovi Rabinovich
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/148004
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:World Models Approach Reinforcement Learning helps to tackle complex problems by breaking down the learning task to Vision Model, Memory Model, and Controller Model. Variational Autoencoder (VAE) is commonly used for Vision Model. However, there has been development of other variants of Autoencoders, with one prominent example is ACAI (Adversarially Constrained Autoencoder Interpolations). In this paper, we propose to substitute ACAI to VAE which might improve the performance on Open AI Car Racing environment. Unfortunately, the ingenuity of ACAI does not apply well to the Car Racing environment because of how ACAI is modeled.