Applying interpolation-constrained autoencoders to world models approach reinforcement learning

World Models Approach Reinforcement Learning helps to tackle complex problems by breaking down the learning task to Vision Model, Memory Model, and Controller Model. Variational Autoencoder (VAE) is commonly used for Vision Model. However, there has been development of other variants of Autoencoders...

全面介紹

Saved in:
書目詳細資料
主要作者: Kevin Winata
其他作者: Zinovi Rabinovich
格式: Final Year Project
語言:English
出版: Nanyang Technological University 2021
主題:
在線閱讀:https://hdl.handle.net/10356/148004
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:World Models Approach Reinforcement Learning helps to tackle complex problems by breaking down the learning task to Vision Model, Memory Model, and Controller Model. Variational Autoencoder (VAE) is commonly used for Vision Model. However, there has been development of other variants of Autoencoders, with one prominent example is ACAI (Adversarially Constrained Autoencoder Interpolations). In this paper, we propose to substitute ACAI to VAE which might improve the performance on Open AI Car Racing environment. Unfortunately, the ingenuity of ACAI does not apply well to the Car Racing environment because of how ACAI is modeled.