Automated abuse detection of privacy policy
With the wide adoption of smart devices and mobile apps, users are able to perform daily activities such as internet banking, shopping and even instant messaging. These mobile apps collect a variety of information from their users which poses significant risks to data privacy. Therefore, privacy pol...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Final Year Project |
Language: | English |
Published: |
Nanyang Technological University
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/148046 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-148046 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-1480462021-04-22T06:54:51Z Automated abuse detection of privacy policy Tan, Soo Yong Liu Yang School of Computer Science and Engineering yangliu@ntu.edu.sg Engineering::Computer science and engineering::Computing methodologies::Document and text processing With the wide adoption of smart devices and mobile apps, users are able to perform daily activities such as internet banking, shopping and even instant messaging. These mobile apps collect a variety of information from their users which poses significant risks to data privacy. Therefore, privacy policies are intended to describe their data privacy practices and in recent years, there have been regulatory restrictions such as the General Data Protection Regulation (GDPR) that serves as a guideline for such practices. However, due to a lack of understanding of GDPR, privacy policies might be vague and incomplete which fails to inform users how data is being stored, used or shared. Furthermore, due to the complexity and length of privacy policies, users tend to ignore them. As such, this report proposes an automated privacy policy classification tool to determine if a privacy policy is complete through the use of machine learning and deep learning techniques. These techniques will be used to learn the input features and patterns of various sentences that constitute a complete privacy policy. At the same time, a comparison was made to determine which algorithm performs the best in the classification. Bachelor of Engineering (Computer Science) 2021-04-22T06:54:51Z 2021-04-22T06:54:51Z 2021 Final Year Project (FYP) Tan, S. Y. (2021). Automated abuse detection of privacy policy. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/148046 https://hdl.handle.net/10356/148046 en SCSE20-0199 application/pdf Nanyang Technological University |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Engineering::Computer science and engineering::Computing methodologies::Document and text processing |
spellingShingle |
Engineering::Computer science and engineering::Computing methodologies::Document and text processing Tan, Soo Yong Automated abuse detection of privacy policy |
description |
With the wide adoption of smart devices and mobile apps, users are able to perform daily activities such as internet banking, shopping and even instant messaging. These mobile apps collect a variety of information from their users which poses significant risks to data privacy. Therefore, privacy policies are intended to describe their data privacy practices and in recent years, there have been regulatory restrictions such as the General Data Protection Regulation (GDPR) that serves as a guideline for such practices. However, due to a lack of understanding of GDPR, privacy policies might be vague and incomplete which fails to inform users how data is being stored, used or shared. Furthermore, due to the complexity and length of privacy policies, users tend to ignore them. As such, this report proposes an automated privacy policy classification tool to determine if a privacy policy is complete through the use of machine learning and deep learning techniques. These techniques will be used to learn the input features and patterns of various sentences that constitute a complete privacy policy. At the same time, a comparison was made to determine which algorithm performs the best in the classification. |
author2 |
Liu Yang |
author_facet |
Liu Yang Tan, Soo Yong |
format |
Final Year Project |
author |
Tan, Soo Yong |
author_sort |
Tan, Soo Yong |
title |
Automated abuse detection of privacy policy |
title_short |
Automated abuse detection of privacy policy |
title_full |
Automated abuse detection of privacy policy |
title_fullStr |
Automated abuse detection of privacy policy |
title_full_unstemmed |
Automated abuse detection of privacy policy |
title_sort |
automated abuse detection of privacy policy |
publisher |
Nanyang Technological University |
publishDate |
2021 |
url |
https://hdl.handle.net/10356/148046 |
_version_ |
1698713689046122496 |