Ultra-low power real-ime object detection based on quantized CNNs
With the recent proliferation of deep learning-based solutions to object detection, the state-of-the-art accuracy has been increasing far beyond what was achievable using traditional methods. However, the hardware requirements for running these models in real-time are high, so they are expensive to...
محفوظ في:
المؤلف الرئيسي: | Chew, Jing Wei |
---|---|
مؤلفون آخرون: | Weichen Liu |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/148048 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Ultra low power tags for real-time location tracking of people and objects
بواسطة: Muhammad Subhaan Mohd Salleh
منشور في: (2018) -
Investigating the causes of the vulnerability of CNNs to adversarial perturbations: learning objective, model components, and learned representations
بواسطة: Coppola, Davide
منشور في: (2023) -
Industrial attachment report with Institute of Microelectronics (IME)
بواسطة: Liu, Bing.
منشور في: (2011) -
Report on industrial attachment with IME (Institute of Microelectronics)
بواسطة: Zhu, Jia.
منشور في: (2008) -
Caries and Restoration Detection Using Bitewing Film Based on Transfer Learning with CNNs
بواسطة: Mao, Yi-Cheng, وآخرون
منشور في: (2021)