Fraction-Score : a new support measure for co-location pattern mining

Co-location patterns are well-established on spatial objects with categorical labels, which capture the phenomenon that objects with certain labels are often located in close geographic proximity. Similar to frequent itemsets, co-location patterns are defined based on a support measure which quantif...

Full description

Saved in:
Bibliographic Details
Main Authors: Chan, Harry Kai-Ho, Long, Cheng, Yan, Da, Wong, Raymond Chi-Wing
Other Authors: School of Computer Science and Engineering
Format: Conference or Workshop Item
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/148135
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Co-location patterns are well-established on spatial objects with categorical labels, which capture the phenomenon that objects with certain labels are often located in close geographic proximity. Similar to frequent itemsets, co-location patterns are defined based on a support measure which quantifies the popularity (or prevalence) of a pattern candidate (a label set). Quite a few support measures exist for defining co-location patterns and they share an idea of counting the number of instances of a given label set C as its support, where an instance of C is an object set whose objects carry all the labels in C and are located close to one another. Unfortunately, these measures suffer from various weaknesses, e.g., some fail to capture all possible instances while some others overlook the cases when multiple instances overlap. In this paper, we propose a new measure called Fraction-Score whose idea is to count instances fractionally if they overlap. Compared to existing measures, Fraction-Score not only captures all possible instances, but also handles the cases where instances overlap appropriately (so that the supports defined are more meaningful and consistent with the desirable anti-monotonicity property). To solve the co-location pattern mining problem based on Fraction-Score, we develop efficient algorithms which are significantly faster than a baseline that adapts the state-of-the-art. We conduct extensive experiments using both real and synthetic datasets, which verified the superiority of Fraction-Score and also the efficiency of our developed algorithms.