Poster : recovering the input of neural networks via single shot side-channel attacks
The interplay between machine learning and security is becoming more prominent. New applications using machine learning also bring new security risks. Here, we show it is possible to reverse-engineer the inputs to a neural network with only a single-shot side-channel measurement assuming the attacke...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/148356 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The interplay between machine learning and security is becoming more prominent. New applications using machine learning also bring new security risks. Here, we show it is possible to reverse-engineer the inputs to a neural network with only a single-shot side-channel measurement assuming the attacker knows the neural network architecture being used. |
---|