Engineering controllable biofilms for biotechnological applications

Bacteria in natural and engineered habitats often live as multicellular aggregates embedded in a self-produced matrix of extracellular polymeric substances (EPS), known as biofilms (Hall-Stoodleyet al., 2004; Flemming and Wuertz, 2019). Biofilms are central to several grand challenges that we need t...

Full description

Saved in:
Bibliographic Details
Main Authors: Mukherjee, Manisha, Cao, Bin
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/148374
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Bacteria in natural and engineered habitats often live as multicellular aggregates embedded in a self-produced matrix of extracellular polymeric substances (EPS), known as biofilms (Hall-Stoodleyet al., 2004; Flemming and Wuertz, 2019). Biofilms are central to several grand challenges that we need to address in the 21st century, for example, clean water access, as well as exert considerable economic impact on industry sectors ranging from environmental, agricultural to chemical, medical,energy and manufacturing. The term ‘biofilm engineering’ was first introduced in the early 1990s by the Center for Biofilm Engineering in Montana State University, where biofilm engineering broadly referred to fundamental and applied biofilm research driven by industrial, environmental and health issues. In 2019, the National Biofilm Innovation Centre (NBIC) of UK organized a biofilm engineering workshop, where the industrial and research community defined four key interventional strategies: Prevention, Detection, Management and Engineering, to tackle detrimental biofilms and utilize beneficial biofilms (https://www.biofilms.ac.uk/wp-content/uploads/2019/11/NBIC-Engineering-Report-Final.pdf). Among which, bio-film engineering refers to harnessing the beneficial uses of microbial communities by understanding the fundamentals of biofilm developmental process. This definition is more specific and narrows the focus of biofilm engineering down to the beneficial uses of biofilms.