Surface composition dependent ligand effect in tuning the activity of nickel–copper bimetallic electrocatalysts toward hydrogen evolution in alkaline

Exploring efficient and low-cost electrocatalysts for hydrogen evolution reaction (HER) in alkaline media is crit-ical for developing anion exchange membrane electrolyzers. The key to a rational catalyst design is understanding the de-scriptors that govern the alkaline HER activity. Unfortunately, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei, Chao, Sun, Yuanmiao, Scherer, Günther G., Fisher, Adrian C., Sherburne, Matthew, Ager, Joel W., Xu, Zhichuan Jason
Other Authors: School of Materials Science and Engineering
Format: Article
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/148443
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Exploring efficient and low-cost electrocatalysts for hydrogen evolution reaction (HER) in alkaline media is crit-ical for developing anion exchange membrane electrolyzers. The key to a rational catalyst design is understanding the de-scriptors that govern the alkaline HER activity. Unfortunately, the principles that governs alkaline HER performance remain unclear and are still under debate. By studying the alkaline HER at a series of NiCu bimetallic surfaces, where the electronic structure is modulated by ligand effect, we demonstrate that alkaline HER activity can be correlated with either the calculated or the experimental-measured d band center (an indicator of hydrogen binding energy) via a volcano-type relationship. Such correlation indicates the descriptor role of d band center, and this hypothesis is further supported by the evidence that com-bining Ni and Cu produces a variety of adsorption sites, which possess near-optimal hydrogen binding energy. Our finding broadens the applicability of d band theory to activity prediction of metal electrocatalysts and may offer an insightful under-standing of alkaline HER mechanism.