Commutative algebra and algebraic varieties

This report surveys the issue of finding the rank varieties that arise from the representation of the permutation groups Sn over the finite field Fp. The underlying module that we are working with is the simple module D(p − 1) for p a prime number. Here we explain how the rank varieties are computed...

Full description

Saved in:
Bibliographic Details
Main Author: Tan, Zhi Hong
Other Authors: Lim Kay Jin
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/148497
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:This report surveys the issue of finding the rank varieties that arise from the representation of the permutation groups Sn over the finite field Fp. The underlying module that we are working with is the simple module D(p − 1) for p a prime number. Here we explain how the rank varieties are computed, followed by analyzing its reducibility. Letting n = pk, for small cases p = 2, k = 2, 3, 4 and p = 3, k = 2, 3, we found that the rank varieties obtained are homogeneous multivariate polynomials which take on the form of ∑(Xi1, Xi2, ···, Xik−1)^{p−1}, where the index are all possible strictly increasing sequences satisfying 1 ≤ i1 < i2 < ··· < ik−1 ≤ k. We also established the irreducibility of the rank variety for the case p = 3, k = 3. Lastly, we explored the Hilbert Series of the quotient of the polynomial ring by the rank varieties. It turns out that the Hilbert Series depends on the degree of the homogeneous polynomial associated to the rank variety.