Computational ideal theory and groebner basis

For every ideal in a polynomial ring over a field, there exists a finite basis as stated by Hilbert's Basis Theorem. However, as classical proofs of the theorem are nonconstructive, several academics have attempted to develop constructive proofs of the theorem. Amongst them, Buchberger develope...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Zheng, Jia Li
مؤلفون آخرون: Wu Guohua
التنسيق: Final Year Project
اللغة:English
منشور في: Nanyang Technological University 2021
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/148504
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Nanyang Technological University
اللغة: English
الوصف
الملخص:For every ideal in a polynomial ring over a field, there exists a finite basis as stated by Hilbert's Basis Theorem. However, as classical proofs of the theorem are nonconstructive, several academics have attempted to develop constructive proofs of the theorem. Amongst them, Buchberger developed the theory of Groebner basis and came up with an algorithm to construct a basis from any finite generating set. In the first four sections of this paper, I shall attempt to provide an elementary introduction to the theory of Groebner basis.