Computational ideal theory and groebner basis
For every ideal in a polynomial ring over a field, there exists a finite basis as stated by Hilbert's Basis Theorem. However, as classical proofs of the theorem are nonconstructive, several academics have attempted to develop constructive proofs of the theorem. Amongst them, Buchberger develope...
محفوظ في:
المؤلف الرئيسي: | |
---|---|
مؤلفون آخرون: | |
التنسيق: | Final Year Project |
اللغة: | English |
منشور في: |
Nanyang Technological University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/148504 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Nanyang Technological University |
اللغة: | English |
الملخص: | For every ideal in a polynomial ring over a field, there exists a finite basis as stated by Hilbert's Basis Theorem. However, as classical proofs of the theorem are nonconstructive, several academics have attempted to develop constructive proofs of the theorem. Amongst them, Buchberger developed the theory of Groebner basis and came up with an algorithm to construct a basis from any finite generating set. In the first four sections of this paper, I shall attempt to provide an elementary introduction to the theory of Groebner basis. |
---|