Explainable and argumentation-based decision making with qualitative preferences for diagnostics and prognostics of Alzheimer's Disease

Argumentation has gained traction as a formalism to make more transparent decisions and provide formal explanations recently. In this paper, we present an argumentation-based approach to decision making that can support modelling and automated reasoning about complex qualitative preferences and offe...

Full description

Saved in:
Bibliographic Details
Main Authors: Zeng, Zhiwei, Shen, Zhiqi, Tan, Benny Toh Hsiang, Chin, Jing Jih, Leung, Cyril, Wang, Yu, Chi, Ying, Miao, Chunyan
Other Authors: School of Computer Science and Engineering
Format: Conference or Workshop Item
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/10356/148710
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Argumentation has gained traction as a formalism to make more transparent decisions and provide formal explanations recently. In this paper, we present an argumentation-based approach to decision making that can support modelling and automated reasoning about complex qualitative preferences and offer dialogical explanations for the decisions made. We first propose Qualitative Preference Decision Frameworks (QPDFs). In a QPDF, we use contextual priority to represent the relative importance of combinations of goals in different contexts and define associated strategies for deriving decision preferences based on prioritized goal combinations. To automate the decision computation, we map QPDFs to Assumption-based Argumentation (ABA) frameworks so that we can utilize existing ABA argumentative engines for our implementation. We implemented our approach for two tasks, diagnostics and prognostics of Alzheimer's Disease (AD), and evaluated it with real-world datasets. For each task, one of our models achieves the highest accuracy and good precision and recall for all classes compared to common machine learning models. Moreover, we study how to formalize argumentation dialogues that give contrastive, focused and selected explanations for the most preferred decisions selected in given contexts.