Disinfection by UV

The unprecedented COVID-19 global pandemic has caused pandemonium worldwide. As of today, the death toll has exceeded approximately 3 million globally. Besides mask wearing and safe distancing measures, various disinfection techniques have also been widely applied to reduce the spread of the virus i...

Full description

Saved in:
Bibliographic Details
Main Author: Chai, Isaiah Nehemiah
Other Authors: Lim Tuti Mariana
Format: Final Year Project
Language:English
Published: Nanyang Technological University 2021
Subjects:
Online Access:https://hdl.handle.net/10356/148975
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-148975
record_format dspace
spelling sg-ntu-dr.10356-1489752021-05-11T03:48:49Z Disinfection by UV Chai, Isaiah Nehemiah Lim Tuti Mariana School of Civil and Environmental Engineering Nanyang Environment and Water Research Institute TMLim@ntu.edu.sg Engineering::Civil engineering Engineering::Environmental engineering The unprecedented COVID-19 global pandemic has caused pandemonium worldwide. As of today, the death toll has exceeded approximately 3 million globally. Besides mask wearing and safe distancing measures, various disinfection techniques have also been widely applied to reduce the spread of the virus in key industries such as healthcare and food. In the food industry, infected asymptomatic patients may spread the virus through cough droplets when they handle food packaging in markets. To address this problem, disinfection methods via UV emission to render the virus harmless have been sold in the market. However, the efficacy of the method may vary from one supplier to another as it depends on several factors such as UV intensity, distance, and duration of disinfection etc. Hence, this project evaluated the efficacy of several UVC LEDs available in the market and investigated the effect of UV wavelength, intensity, distance, and duration of UVC exposure as well as bacteria growth stage disinfection performance on food plastic packaging. Due to safety protocol, the E.Coli K12-MG1655 strain was selected and used as the model organism for this disinfection study. With respect to distances studied (3, 6, 9 and 12 cm), the experimental data showed that a vertical height at 3 cm is the most effective in inactivating bacteria while UV LED with wavelength of 254 nm is the most effective in inactivating bacteria, followed by 260 nm and finally, 270 nm. The study also found that disinfection can be carried out effectively when the bacteria is in the exponential growth phase. Furthermore, SEM analysis revealed negligible damage to the plastic packaging after exposure to UV radiation within a 30 minutes duration. Hence, it can be concluded that shortest distance and lower UVC wavelength are the most optimal parameters in inactivating organisms without damaging the plastic packaging material. Bachelor of Engineering (Civil) 2021-05-11T03:48:49Z 2021-05-11T03:48:49Z 2021 Final Year Project (FYP) Chai, I. N. (2021). Disinfection by UV. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/148975 https://hdl.handle.net/10356/148975 en EN-35 application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Engineering::Civil engineering
Engineering::Environmental engineering
spellingShingle Engineering::Civil engineering
Engineering::Environmental engineering
Chai, Isaiah Nehemiah
Disinfection by UV
description The unprecedented COVID-19 global pandemic has caused pandemonium worldwide. As of today, the death toll has exceeded approximately 3 million globally. Besides mask wearing and safe distancing measures, various disinfection techniques have also been widely applied to reduce the spread of the virus in key industries such as healthcare and food. In the food industry, infected asymptomatic patients may spread the virus through cough droplets when they handle food packaging in markets. To address this problem, disinfection methods via UV emission to render the virus harmless have been sold in the market. However, the efficacy of the method may vary from one supplier to another as it depends on several factors such as UV intensity, distance, and duration of disinfection etc. Hence, this project evaluated the efficacy of several UVC LEDs available in the market and investigated the effect of UV wavelength, intensity, distance, and duration of UVC exposure as well as bacteria growth stage disinfection performance on food plastic packaging. Due to safety protocol, the E.Coli K12-MG1655 strain was selected and used as the model organism for this disinfection study. With respect to distances studied (3, 6, 9 and 12 cm), the experimental data showed that a vertical height at 3 cm is the most effective in inactivating bacteria while UV LED with wavelength of 254 nm is the most effective in inactivating bacteria, followed by 260 nm and finally, 270 nm. The study also found that disinfection can be carried out effectively when the bacteria is in the exponential growth phase. Furthermore, SEM analysis revealed negligible damage to the plastic packaging after exposure to UV radiation within a 30 minutes duration. Hence, it can be concluded that shortest distance and lower UVC wavelength are the most optimal parameters in inactivating organisms without damaging the plastic packaging material.
author2 Lim Tuti Mariana
author_facet Lim Tuti Mariana
Chai, Isaiah Nehemiah
format Final Year Project
author Chai, Isaiah Nehemiah
author_sort Chai, Isaiah Nehemiah
title Disinfection by UV
title_short Disinfection by UV
title_full Disinfection by UV
title_fullStr Disinfection by UV
title_full_unstemmed Disinfection by UV
title_sort disinfection by uv
publisher Nanyang Technological University
publishDate 2021
url https://hdl.handle.net/10356/148975
_version_ 1701270547443220480